Search results for "Multiplication operator"
showing 8 items of 8 documents
On Determinants of Integrable Operators with Shifts
2013
Integrable integral operator can be studied by means of a matrix Riemann--Hilbert problem. However, in the case of so-called integrable operators with shifts, the associated Riemann--Hilbert problem becomes operator valued and this complicates strongly the analysis. In this note, we show how to circumvent, in a very simple way, the use of such a setting while still being able to characterize the large-$x$ asymptotic behavior of the determinant associated with the operator.
Mean ergodicity of weighted composition operators on spaces of holomorphic functions
2016
[EN] Let phi be a self-map of the unit disc D of the complex plane C and let psi be a holomorphic function on D. We investigate the mean ergodicity and power boundedness of the weighted composition operator C-phi,C-psi(f) = psi(f o phi) with symbol phi and multiplier psi on the space H(D). We obtain necessary and sufficient conditions on the symbol phi and on the multiplier psi which characterize when the weighted composition operator is power bounded and (uniformly) mean ergodic. One necessary condition is that the symbol phi has a fixed point in D. If phi is not a rational rotation, the sufficient conditions are related to the modulus of the multiplier on the fixed point of phi. Some of o…
Explicit form of the time operator of a gaussian stationary process
2004
We present the time operator theory in the framework of stationary stochastic processes. The main results of the paper is the derivation of the time operator acting on the Fock space associated with a discrete time gaussian stationary process.
Partial $\ast$-algebras of distributions
2005
The problem of multiplying elements of the conjugate dual of certain kind of commutative generalized Hilbert algebras, which are dense in the set of C ∞ -vectors of a self-adjoint operator, is considered in the framework of the so-called duality method. The multiplication is defined by identifying each distribution with a multiplication operator acting on the natural rigged Hilbert space. Certain spaces, that are an
Generation of Frames
2004
It is well known that, given a generic frame, there exists a unique frame operator which satisfies, together with its adjoint, a double operator inequality. In this paper we start considering the inverse problem, that is how to associate a frame to certain operators satisfying the same kind of inequality. The main motivation of our analysis is the possibility of using frame theory in the discussion of some aspects of the quantum time evolution, both for open and for closed physical systems.
On ergodic operator means in Banach spaces
2016
We consider a large class of operator means and prove that a number of ergodic theorems, as well as growth estimates known for particular cases, continue to hold in the general context under fairly mild regularity conditions. The methods developed in the paper not only yield a new approach based on a general point of view, but also lead to results that are new, even in the context of the classical Cesaro means.
Quasi *-Algebras and Multiplication of Distributions
1997
AbstractA self-adjoint operatorAinL2(Ω,μ) defines in a natural way a space of test functions SA(Ω) and a corresponding space of distributions S′A(Ω). These are considered as quasi *-algebras and the problem of multiplying distributions is studied in terms of multiplication operators defined on a rigged Hilbert space.
A new mathematical tool for an exact treatment of open quantum system dynamics
2005
A new method to obtain an operatorial exact solution of a wide class of Markovian master equations is presented. Its key point is the existence of a constant of motion partitioning the Hilbert space into finite-dimensional subspaces. The consequent possibility of representing the reduced density operator as a block diagonal matrix is shown. Each “block operator” evolves under the action of a non-unitary operator explicitly derived. Our mathematical approach is illustrated applying it to simple physical systems.